Table 3. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{P}-\mathrm{O}$	$1 \cdot 482$ (2)	$\mathrm{P}-\mathrm{C}(1)$	1.793 (2)
$\mathrm{P}-\mathrm{C}(11)$	1.812 (2)	$\mathrm{P}-\mathrm{C}(21)$	1.807 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.525 (3)	$\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	1.521 (3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.381 (4)	C(11)-C(16)	1.382 (4)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 377$ (4)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.361 (5)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.358 (5)	$\mathrm{C}(15)-\mathrm{C}(16) \quad 1$	1.383 (4)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.381 (4)	$\mathrm{C}(21)-\mathrm{C}(26)$	1.387 (3)
$\mathrm{C}(22)-\mathrm{C}(23)$	1-382 (4)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.368 (4)
$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 367$ (5)	$\mathrm{C}(25)-\mathrm{C}(26) \quad 1$	1.381 (4)
$\mathrm{O}-\mathrm{P}-\mathrm{C}(1)$	114.9 (1)	O-P-C(11)	111.00 (9)
$\mathrm{O}-\mathrm{P}-\mathrm{C}(21)$	112.45 (9)	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(11)$	105.6 (1)
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(21)$	106.9 (1)	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$105 \cdot 3$ (1)
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	112.0 (2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	$113 \cdot 1$ (2)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	123.7 (2)	$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	118.1 (2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$) 118.3 (2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) $120 \cdot 1$ (2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$) 121.1 (3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$) 119.6 (3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$) $120 \cdot 2(3)$	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$) 120.7 (3)
$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)$	123.6 (2)	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(26)$	117.9 (2)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$) 118.5 (2)	$\mathbf{C}(21)-\mathbf{C}(22)-\mathrm{C}(23)$) 120.4 (2)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$) 120.4 (3)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$) 120.0 (3)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$) 119.9 (3)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$) $120 \cdot 8(2)$

Related literature. The molecule is sited on a crystallographic center of symmetry which relates one half of the molecule to the other. Related structures have been described by Oliva, Castellano \& De Carvalho (1981) and Rivera, Gómez C, Rodulfo de Gil \& Suarez (1988).

This work has received partial support from CNPq, FAPESP, CAPES and FINEP, which are hereby gratefully acknowledged.

Fig. 1. Perspective view of the molecule showing the atom labeling.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Oliva, G., Castellano, E. E. \& De Carvalho, L. R. F. (1981). Acta Cryst. B37, 474-475.
Rivera, A. V., Gómez C, D., Rodulfo de Gil, E. E. \& Suarez, T. (1988). Acta Cryst. C44, 277-279.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1991). C47, 2700-2702

Structure of endo- $\left(5 R^{*}, 6 R^{*}, 11 R^{*}, 12 S^{*}\right)-5,6,11,12-T e t r a h y d r o-4,11,12$-trimethoxy-9,13,13-trimethyl-5-(triethylsiloxy)-6,10-methano-8(7H)-benzocyclodecenone

By Yoshi Sakai, Yuko Kojma, Yuj Ohashi,* Koichiro Morihira, Takashi Furukawa, Yoshiaki Horiguchi and Isao Kuwajima*
Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan

(Received 20 May 1991; accepted 1 July 1991)

Abstract

C}_{27} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}, \quad M_{r}=474.71\), monoclinic, $P 2_{1} / n, a=9.389$ (5),$b=35.542$ (7), $c=8.899$ (4) \AA, $\beta=114.25$ (3) ${ }^{\circ}, \quad V=2707(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.164 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $1.14 \mathrm{~cm}^{-1}, \quad F(000)=1032, \quad T=298 \mathrm{~K}$, final $R=$ 0.049 for 2926 unique reflections $[~>3.0 \sigma(I)$]. This C -aromatic taxane-like compound contains a $\mathrm{C}=\mathrm{C}$ double bond $[C(9)=C(10)]$ at the bridgehead site $[\mathrm{C}(10)]$ and, consequently, atoms $\mathrm{C}(8), \mathrm{C}(11), \mathrm{C}(13)$ and $\mathrm{C}(16)$ bonded to this $\mathrm{C}=\mathrm{C}$ bond are twisted

[^0]from coplanarity. The largest torsion angle, $\mathrm{C}(8)-$ $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$, is -158.3 (3) ${ }^{\circ}$.

Experimental. Colorless plate-like crystals grown from hexane. Crystal size $0.40 \times 0.40 \times 0.50 \mathrm{~mm}$, Rigaku AFC-5R diffractometer, graphite-monochromated Mo $K \alpha$ radiation, ω scan with scan speed $16^{\circ} \mathrm{min}^{-1}$ in ω, scan width $(1.34+0.35 \tan \theta)^{\circ}$. Range of indices, $0<h<11,0<k<42,-9<l<9$ $\left(2 \theta<50^{\circ}\right)$. Three standard reflections ($\overline{3} \overline{3} \overline{3}, 50 \overline{5}$, $\overline{4}, \overline{1}, 2)$ monitored every 100 reflections with random variation of 2.7% over data collection. Lattice-
parameter determination based on 242θ values (25 $<2 \theta<30^{\circ}$). 5183 reflections measured, 4877 unique ($R_{\text {int }}=0.02$); 2926 observed reflections with $I>$ $3.0 \sigma(I)$. No corrections for absorption or extinction. Structure solved by direct methods and refined by full-matrix least squares. The locations of the methyl H atoms of $\mathrm{C}(16), \mathrm{C}(19)$ and $\mathrm{C}(20)$, the ethyl H atoms and the H attached to $\mathrm{C}(11)$ were calculated stereochemically and not refined. The other H atoms were obtained from a difference map. Non-H atoms refined with anisotropic thermal parameters, and H atoms with isotropic thermal parameters. $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$ minimized for $w^{-1}=\sigma^{2}\left(F_{o}\right)$. Final $R=0.049$,

Fig. 1. A perspective view of the molecule (30% probability ellipsoids) with the numbering scheme.

Fig. 2. Crystal structure viewed along the c axis.

Table 1. Final fractional coordinates and equivalent isotropic temperature factors for non-H atoms with e.s.d.'s in parentheses

	$B_{\text {eq }}=\left(\frac{8}{3} \pi^{2}\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
Si	0.3530 (1)	0.19574 (3)	0.5452 (1)	4.41 (4)
$\mathrm{O}(1)$	0.5393 (2)	0.08087 (6)	0.5377 (3)	4.5 (1)
O(2)	0.2462 (2)	0.16427 (5)	0.4119 (3)	3.6 (1)
$\mathrm{O}(3)$	0.2819 (3)	0.02323 (7)	0.1231 (3)	5.6 (1)
$\mathrm{O}(4)$	-0.1970 (3)	0.06654 (6)	0.2490 (3)	4.2 (1)
O(5)	-0.0971 (2)	0.11552 (6)	0.5019 (3)	4.0 (1)
C(1)	0.1354 (4)	0.0632 (1)	0.6076 (4)	3.6 (1)
C(2)	0.2649 (4)	0.0413 (1)	0.6919 (4)	4.2 (2)
C(3)	0.4002 (4)	0.0462 (1)	0.6684 (4)	3.8 (1)
C(4)	0.4064 (3)	0.07398 (8)	0.5633 (4)	3.2 (1)
C(5)	0.3014 (4)	0.12948 (8)	0.3743 (4)	3.1 (1)
C(6)	0.2389 (4)	0.1240 (1)	0.1843 (4)	3.5 (1)
C(7)	0.3136 (4)	0.0890 (1)	0.1476 (5)	4.1 (2)
C(8)	0.2255 (4)	0.0531 (1)	0.1387 (4)	3.8 (1)
C(9)	0.0780 (4)	0.05461 (9)	0.1660 (4)	3.2 (1)
$\mathrm{C}(10)$	0.0058 (3)	0.08792 (8)	0.1532 (3)	2.9 (1)
C(11)	-0.1071 (4)	0.09642 (9)	0.2314 (4)	3.3 (1)
C(12)	-0.0079 (4)	0.1132 (1)	0.4056 (4)	3.0 (1)
C(13)	0.0602 (4)	0.12178 (9)	0.0836 (4)	3.5 (1)
C(14)	0.1401 (3)	0.09128 (8)	0.5012 (3)	2.8 (1)
C(15)	0.2780 (3)	0.09761 (8)	0.4784 (3)	2.8 (1)
C(16)	0.0422 (4)	0.0179 (1)	0.2272 (5)	4.3 (1)
C(17)	-0.0196 (5)	0.1596 (1)	0.0808 (5)	4.2 (2)
C(18)	0.0217 (6)	0.1140 (1)	-0.1005 (5)	5.0 (2)
C(19)	-0.3207 (4)	0.0565 (1)	0.0952 (5)	5.4 (2)
C(20)	-0.2141 (5)	0.1432 (1)	0.4479 (5)	5.6 (2)
C(21)	0.6577 (5)	0.0531 (1)	0.5860 (8)	5.6 (2)
C(22)	0.2030 (5)	0.2259 (1)	0.5733 (6)	7.4 (2)
C(23)	0.2616 (8)	0.2590 (2)	0.6879 (9)	11.5 (4)
C(24)	0.4710 (5)	0.2227 (1)	0.4512 (6)	7.3 (2)
C(25)	0.3758 (7)	0.2412 (2)	0.2891 (8)	10.3 (3)
C(26)	0.4939 (5)	0.1747 (1)	0.7405 (5)	6.5 (2)
C(27)	0.4253 (7)	0.1578 (1)	0.8516 (6)	9.1 (3)

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{(}\right)$with e.s.d.'s in parentheses

$\mathrm{Si}-\mathrm{O}(2)$	$1.639(2)$
$\mathrm{O}(2)-\mathrm{C}(5)$	$1.432(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.377(5)$
$\mathrm{C}(1)-\mathrm{C}(14)$	$1.389(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.380(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.378(4)$
$\mathrm{C}(4)-\mathrm{C}(15)$	$1.408(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.558(4)$
$\mathrm{C}(5)-\mathrm{C}(15)$	$1.535(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.527(5)$
$\mathrm{C}(6)-\mathrm{C}(13)$	$1.546(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.505(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.501(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.346(4)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.518(4)$
$\mathrm{C}(10)-\mathrm{C}(13)$	$1.533(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.561(4)$
$\mathrm{C}(12)-\mathrm{C}(14)$	$1.513(4)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.408(4)$

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)$	$120.5(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.6(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.4(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)$	$121.7(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(15)$	$118.6(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$109.5(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)$	$118.1(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(13)$	$108.7(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$114.3(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.0(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.0(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$124.0(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(13)$	$119.0(3)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(13)$	$116.1(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$106.7(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(14)$	$113.4(2)$
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{C}(10)$	$105.5(3)$
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(12)$	$118.3(3)$
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	$120.1(3)$
$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{C}(15)$	$121.5(3)$
$\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{C}(5)$	$117.4(3)$
$\mathrm{C}(4)-\mathrm{C}(15)-\mathrm{C}(14)$	$117.6(3)$
$\mathrm{C}(5)-\mathrm{C}(15)-\mathrm{C}(14)$	124.9 (3)

$w R=0.057, S=1.96$ for 366 variables. $(\Delta / \sigma)_{\max }=$ $0.01, \Delta \rho_{\text {max }}=0.34, \Delta \rho_{\text {min }}=-0.20 \mathrm{e} \AA^{-3}$; atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV) and programs used were those from TEXSAN (Molecular Structure Corporation, 1985).

The molecular structure and the crystal structure viewed along the c axis are shown in Figs. 1 and 2, respectively. Positional parameters and equivalent
values of the anisotropic temperature factors are given in Table 1; selected bond distances and angles are listed in Table 2.*

[^1]Related literature. The structure determination is part of our studies on the synthesis of taxane diterpenoids (Horiguchi, Furukawa \& Kuwajima, 1989).

References

Horiguchi, Y., Furukawa, T. \& Kuwajima, I. (1989). J. Am. Chem. Soc. 111, 8277-8279.
Molecular Structure Corporation (1985). TEXSAN TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.

Acta Cryst. (1991). C47, 2702-2704

Micheliolide

By José Castañeda Acosta, Frank R. Fronczek and Nikolaus H. Fischer
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 18 April 1991; accepted 2 July 1991)

Abstract

C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}, \quad M_{r}=248.3\), orthorhombic, C222 $1, \quad a=7.5919$ (7), $\quad b=15.5508$ (7), $\quad c=$ 22.349 (3) $\AA, \quad V=2638.5$ (7) $\AA^{3}, \quad Z=8, \quad D_{x}=$ $1.250 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \quad \mu=$ $0.65 \mathrm{~mm}^{-1}, F(000)=1072, T=294 \mathrm{~K}, R=0.030$ for 1488 observations with $I>3 \sigma(I)$ (of 1544 unique data). The seven-membered ring is trans fused to the lactone ring. The two five-membered rings are in half-chair conformations while the seven-membered ring is in a distorted-chair conformation, with the pseudomirror bisecting the double bond. The C14 methyl group is disordered into two rotamers. Molecules form weakly hydrogen-bonded dimers about twofold axes, in which the OH H atom is disordered. The hydroxy group donates an intermolecular bifurcated hydrogen bond to both O atoms of the lactone ring [$\mathrm{O} \cdots \mathrm{O}$ (carbonyl) 3.399 (2), $\mathrm{O} \cdots \mathrm{O}$ (ring) 3.131 (2) \AA] and accepts a second hydrogen bond from the hydroxy group of the same molecule [$\mathrm{O} \cdots \mathrm{O}$ 3.004 (2) \AA §.

Experimental. Micheliolide (1) is the major compound obtained from the BF_{3}-mediated rearrangement of parthenolide (Parodi, Fronczek \& Fischer, 1989).

Crystals formed from ethyl acetate-hexane solution, m.p. 415-418 K, were suitable; a clear colorless crystal with dimensions $0.25 \times 0.40 \times 0.40 \mathrm{~mm}$ was used for data collection on an Enraf-Nonius CAD-4 diffractometer with $\mathrm{Cu} K \alpha$ radiation and a graphite monochromator. Cell dimensions were determined from setting angles of 25 reflections having $30>\theta>$ 25°. The $\omega-2 \theta$ scans were designed for $I=50 \sigma(I)$, subject to max. scan time $=120 \mathrm{~s}$, scan rates varied
from $0.53-3.30^{\circ} \mathrm{min}^{-1}$. An octant of data having h $+k$ even $\left(2<\theta<75^{\circ}\right) 0 \leq h \leq 9,0 \leq k \leq 19,0 \leq l \leq$ 28 was measured and corrected for background, Lorentz, polarization and absorption. Absorption corrections were based on ψ scans, with min. relative transmission coefficient 96.46%. Three standard reflections ($600,0,10,0,008$) exhibited no significant variation in intensity, and no decay correction was applied. 1544 unique reflections were measured. Systematic absences $h k l$ with $h+k$ odd and $00 l$ with l odd indicated space group $C 222_{1}$. The structure was solved by direct methods using RANTAN (Yao, 1981), refined by full-matrix least squares based upon F, using data for which $I>3 \sigma(I)$, weights $w=$ $4 F_{o}^{2}\left[\sigma^{2}(I)+\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$ using the Enraf-Nonius Structure Determination Package (Frenz \& Okaya, 1980), scattering factors of Cromer \& Waber (1974), and anomalous coefficients of Cromer (1974). Heavy-atom coordinates were refined with anisotropic thermal parameters; H -atom coordinates were located by ΔF synthesis and except as noted below were refined with isotropic thermal parameters. The hydroxy-H atom is disordered into two halfpopulated sites; both were refined isotropically. Methyl group C14 is also disordered into two rotamers. Six half-populated H atoms were included as fixed contributors. Final $R=0.030$ for 1488 observed data (0.031 for all 1544 data), $w R=0.043$ and $S=3.141$ for 236 variables. Max. shift 0.03σ in the final cycle, max. residual density 0.13 , min. $-0.13 \mathrm{e} \AA^{-3}$, and extinction coefficient $g=3.2(2) \times$ 10^{-6} where the factor $\left(1+g I_{c}\right)^{-1}$ was applied to F_{c}. The fractional coordinates of the title compound are given in Table 1. A structural diagram is given

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, bond lengths and angles, and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54416 (17 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

